46 research outputs found

    Identifying patients at risk for augmented renal clearance in the ICU : limitations and challenges

    Get PDF
    Augmented renal clearance (ARC) is an important determinant of antibiotic exposure in critically ill patients, and identifying patients at risk is therefore an important goal. There is a growing body of evidence that a younger patient with a low to moderate degree of organ dysfunction typically is at risk of ARC and therefore decreased exposure to renally eliminated antibiotics. Mechanisms potentially involved, such as increased cardiac output, have, however, not been identified as appropriate surrogate markers, and the search for suitable alternatives to readily identify patients with ARC continues

    Patient tailored antibiotic therapy in critically ill patients

    Get PDF

    Quantitation of antibiotics in exhaled breath : a pilot study (ANTIBEX-trial)

    Get PDF

    A simulation study reveals lack of pharmacokinetic/pharmacodynamic target attainment in de-escalated antibiotic therapy in critically ill patients

    Get PDF
    De-escalation of empirical antibiotic therapy is often included in antimicrobial stewardship programs in critically ill patients, but differences in target attainment when antibiotics are switched are rarely considered. The primary objective of this study was to compare the fractional target attainments of contemporary dosing of empirical broad-spectrum β-lactam antibiotics and narrower-spectrum antibiotics for a number pathogens for which de-escalation may be considered. The secondary objective was to determine whether alternative dosing strategies improve target attainment. We performed a simulation study using published population pharmacokinetic (PK) studies in critically ill patients for a number of broad-spectrum β-lactam antibiotics and narrower-spectrum antibiotics. Simulations were undertaken using a data set obtained from critically ill patients with sepsis without absolute renal failure (n = 49). The probability of target attainment of antibiotic therapy for different microorganisms for which de-escalation was applied was analyzed. EUCAST MIC distribution data were used to calculate fractional target attainment. The probability that therapeutic exposure will be achieved was lower for the narrower-spectrum antibiotics with conventional dosing than for the broad-spectrum alternatives and could drastically be improved with higher dosages and different modes of administrations. For a selection of microorganisms, the probability that therapeutic exposure will be achieved was overall lower for the narrower-spectrum antibiotics using conventional dosing than for the broad-spectrum antibiotics

    An international, multicentre survey of β-lactam antibiotic therapeutic drug monitoring practice in intensive care units

    Get PDF
    Objectives Emerging evidence supports the use of therapeutic drug monitoring (TDM) of β-lactams for intensive care unit (ICU) patients to optimize drug exposure, although limited detail is available on how sites run this service in practice. This multicentre survey study was performed to describe the various approaches used for β-lactam TDM in ICUs. Methods A questionnaire survey was developed to describe various aspects relating to the conduct of β-lactam TDM in an ICU setting. Data sought included: β-lactams chosen for TDM, inclusion criteria for selecting patients, blood sampling strategy, analytical methods, pharmacokinetic (PK)/pharmacodynamic (PD) targets and dose adjustment strategies. Results Nine ICUs were included in this survey. Respondents were either ICU or infectious disease physicians, pharmacists or clinical pharmacologists. Piperacillin (co-formulated with tazobactam) and meropenem (100% of units surveyed) were the β-lactams most commonly subject to TDM, followed by ceftazidime (78%), ceftriaxone (43%) and cefazolin (43%). Different chromatographic and microbiological methods were used for assay of β-lactam concentrations in blood and other biological fluids (e.g. CSF). There was significant variation in the PK/PD targets (100% fT>MIC up to 100% fT>4×MIC) and dose adjustment strategies used by each of the sites. Conclusions Large variations were found in the type of β-lactams tested, the patients selected for TDM and drug assay methods. Significant variation observed in the PK/PD targets and dose adjustment strategies used supports the need for further studies that robustly define PK/PD targets for ICU patients to ensure a greater consistency of practice for dose adjustment strategies for optimizing β-lactam dosing with TD

    Recommendations for enterovirus diagnostics and characterisation within and beyond Europe.

    Get PDF
    Enteroviruses (EV) can cause severe neurological and respiratory infections, and occasionally lead to devastating outbreaks as previously demonstrated with EV-A71 and EV-D68 in Europe. However, these infections are still often underdiagnosed and EV typing data is not currently collected at European level. In order to improve EV diagnostics, collate data on severe EV infections and monitor the circulation of EV types, we have established European non-polio enterovirus network (ENPEN). First task of this cross-border network has been to ensure prompt and adequate diagnosis of these infections in Europe, and hence we present recommendations for non-polio EV detection and typing based on the consensus view of this multidisciplinary team including experts from over 20 European countries. We recommend that respiratory and stool samples in addition to cerebrospinal fluid (CSF) and blood samples are submitted for EV testing from patients with suspected neurological infections. This is vital since viruses like EV-D68 are rarely detectable in CSF or stool samples. Furthermore, reverse transcriptase PCR (RT-PCR) targeting the 5'noncoding regions (5'NCR) should be used for diagnosis of EVs due to their sensitivity, specificity and short turnaround time. Sequencing of the VP1 capsid protein gene is recommended for EV typing; EV typing cannot be based on the 5'NCR sequences due to frequent recombination events and should not rely on virus isolation. Effective and standardized laboratory diagnostics and characterisation of circulating virus strains are the first step towards effective and continuous surveillance activities, which in turn will be used to provide better estimation on EV disease burden

    Beta-lactam antibiotic dosing during continuous renal replacement therapy: how can we optimize therapy?

    No full text
    Correct antibiotic treatment is of utmost importance to treat infections in critically ill patients, not only in terms of spectrum and timing but also in terms of dosing. However, this is a real challenge for the clinician because the pathophysiology (such as shock, augmented renal clearance, and multiple organ dysfunction) has a major impact on the pharmacokinetics of hydrophilic antibiotics. The presence of extra-corporal circuits, such as continuous renal replacement therapy, may further complicate this difficult exercise. Standard dosing may result in inadequate concentrations, but unadjusted dosing regimens may lead to toxicity. Recent studies confirm the variability in concentrations, and the wide variation in dialysis techniques used certainly contributes to these findings. Well-designed clinical studies are needed to provide the data from which robust dosing guidance can be developed. In the meantime, non-adjusted dosing in the first 1 to 2 days of antibiotic therapy during continuous renal replacement therapy followed by dose reduction later on seems to be a prudent approach
    corecore